Saltar al contenido principal

Un grupo de investigación de la Universidad de Columbia (Nueva York-EE UU) ha hallado por casualidad un material superatómico, denominado Re₆Se₈Cl₂ (compuesto por renio, selenio y cloro), que ha servido como semiconductor para que los electrones recorran en los experimentos micrómetros en menos de un nanosegundo. “Teóricamente, tienen el potencial de alcanzar los femtosegundos, seis órdenes de magnitud [10⁶] más rápido que la velocidad alcanzable en la electrónica actual de gigahercios y a temperatura ambiente”, explican los investigadores.

El hallazgo, publicado en la revista Science, ha sido casual y gracias al estudiante Jack Tulyag, que trabaja en su doctorado con el profesor de Química de Columbia Milan Delor. El primero llevó al laboratorio el Re₆Se₈Cl₂, creyéndolo un material sin alta capacidad de conducción, para probar los microscopios de superresolución, que pueden capturar partículas que se mueven a escalas ultrarrápidas y ultramicroscópicas. “Fue lo contrario de lo que esperábamos. En lugar del movimiento lento que presumíamos, vimos lo más rápido que hemos visto nunca”, afirma Delor.

Según el investigador, los semiconductores basados en silicio permiten un movimiento rápido de los electrones que no se preveía en el material superatómico. Pero el experimento permitió descubrir que, en el Re₆Se₈Cl₂, el excitón (un estado cuántico formado por electrones que han absorbido energía y el hueco generado cuando la partícula salta a un estado de energía más alto) se empareja con el fonón, una cuasipartícula portadora de energía y fundamental en la conductividad eléctrica. Esta asociación genera una nueva cuasipartícula, denominada excitón-polarón acústico, más pesada, pero que, de forma paradójica, ha resultado ser más veloz.

Delor recurre a la fábula de Esopo para explicarlo. En el silicio, los electrones pueden moverse a través de él muy rápidamente, pero como la liebre, que se entretiene confiada en su capacidad, “rebotan demasiado y no llegan muy lejos y muy rápido al final”. Por el contrario, en el material superatómico, los excitones se emparejan con los fonones para avanzar, como la tortuga, “lentamente, pero de forma constante,” en “un flujo balístico o libre de dispersión”. Este comportamiento es similar al de un fluido que discurriera sin fricción por un conducto y, por lo tanto, sin perder energía cinética.

“Al no verse obstaculizados en el camino, el excitón-polarón acústico se mueve en última instancia más rápido en el Re₆Se₈Cl₂ que los electrones en el silicio”, resume el investigador.

En los experimentos, los excitones-polarones acústicos alcanzaron en el Re₆Se₈Cl₂ varios micrómetros de la muestra en menos de un nanosegundo. Esta velocidad, teniendo en cuenta que pueden permanecer estables unos 11 nanosegundos y ser controlados con luz en vez de con electricidad, permite a los investigadores calcular que, teóricamente, “podrían cubrir más de 25 micrómetros en femtosegundos”.

Este hallazgo podría tener importantes aplicaciones en el desarrollo de nuevos dispositivos electrónicos, como ordenadores y sensores, que sean más rápidos y eficientes.